

International Journal of Applied Science and Mathematical Theory E- ISSN 2489-009X

P-ISSN 2695-1908, Vol. 11 No. 2 2025 www.iiardjournals.org Online Version

 IIARD – International Institute of Academic Research and Development

Page 11

Bridging Theory and Computation: MATLAB-Based Numerical

Methods for Solving Initial Value Problems in Ordinary Differential

Equations

Udoh, Ndipmong A.

Department of Mathematics and Statistics, Faculty of Science

Federal University Otuoke. Bayelsa State, Nigeria.

Email: udohna@fuotuoke.edu.ng

Egbuhuzor, Udechukwu Peter

Department of Mathematics and Statistics, Faculty of Science

Federal University Otuoke. Bayelsa State, Nigeria.

Email: egbuhuzorup@fuotuoke.edu.ng

DOI: 10.56201/ijasmt.vol.11.no2.2025.pg11.25

Abstract

Numerical methods are very significant as it provides approximate solutions to initial value

problems (IVPs) in ordinary differential equations (ODEs) where analytical methods fail. This

research work considers the implementation of four widely-used numerical methods: Euler’s

Method, Runge-Kutta Fourth-Order Method, Heun’s Method, and Milne’s Predictor-Corrector

Method, using MATLAB, a powerful tool for technical computing. This work aims to serve as a

practical guide for students and researchers, illustrating the seamless integration of theoretical

concepts with computational techniques. It provides a structured framework that can be used for

any initial value problems (IVPs) in ordinary differential equations (ODEs). Using a single

example problem, we demonstrate the step-by-step MATLAB programming of each method,

emphasizing computational efficiency, accuracy and error analysis. This research underscores

MATLAB’s capacity to simplify complex numerical computations and offers recommendations for

future enhancements. By bridging theoretical foundations and practical applications, this work

contributes to the broader understanding and accessibility of numerical methods in scientific

computing.

Keywords: MATLAB; Euler’s Method; Runge-Kutta method; Heun’s Method; Milne’s Method

about:blank
mailto:egbuhuzorup@fuotuoke.edu.ng
about:blank

International Journal of Applied Science and Mathematical Theory E- ISSN 2489-009X

P-ISSN 2695-1908, Vol. 11 No. 2 2025 www.iiardjournals.org Online Version

 IIARD – International Institute of Academic Research and Development

Page 12

1. INTRODUCTION

MATLAB is a high-performance, multipurpose language that is widely used in technical

computing. It offers an integrated environment for computation, visualization, and programming

(MathWorks, 2024). It is a vital tool for data analysis, graphical illustration creation, and

mathematical problem solving due to its strong capabilities (Moler, (2020) and Bouchaib &

Abdelkhalak (2018)). MATLAB originated from the idea of “MATrix LABoratory” and its main

feature is its matrix-based programming language, which makes it easier to represent

computational mathematics naturally (Gander & Hřebíček, 2018).

The MATLAB software package offers an efficient platform for examining the design and

implementation of numerical algorithms as well as for understanding programming ideas (Higham

& Higham, 2017). Its applications cover a wide range of scientific and engineering fields,

including signal processing, solving differential equations and optimization problems. MATLAB's

relevance in numerical calculations has been highlighted in recent researches, which have used it

to teach numerical methods in academic contexts (Ali & Khan, 2021), build hybrid algorithms

(Chen & Wang, 2022) and simulate complicated systems (Gupta & Rana, 2023). Additionally,

MATLAB's vast libraries and toolboxes make it easier to apply sophisticated approaches, making

it an indispensable tool for both practitioners and scholars (Abbas & Zhang, (2023) and Lin &

Chou, (2023)). By leveraging its computing capacity and intuitive user interface, MATLAB

remains a fundamental tool for theoretical exploration and practical problem-solving in numerical

computations (Smith & Brown, (2021), Chapra & Canale, (2010), and Jones et al (2022)).

This research work examines Euler’s Method, Runge-Kutta Method, Heun’s Method, and Milne’s

Method, provides a comprehensive comparison of their underlying algorithms, accuracy, and

practical applicability. By integrating theoretical insights with MATLAB-based implementations,

this research work aims to explore how MATLAB can be used to implement these advanced

numerical methods, with a focus on solving real-world problems across a range of applications.

2. ANALYSIS OF METHODS

Here, we discuss the theoretical aspect of the methods under study, develop the algorithms and

write the MATLAB programming codes using a single problem for the different methods.

2.1 Euler’s Method

Euler’s method is one of the simplest and earliest numerical techniques for solving ODEs. It

approximates the solution by moving the solution forward in discrete steps, using the tangent (the

derivative) at the present position to estimate the next value. The method is first-order accurate

that is, the error decreases linearly with the step size. Despite its low computational cost, Euler’s

method can be unstable and lacks precision for stiff equations or large step sizes. It is still widely

used for initial computations since it is straightforward and easy to implement, its limitations not

withstanding (Williams & Zhang, 2023).

Given the initial value problem of the first order differential equations of the form:

about:blank

International Journal of Applied Science and Mathematical Theory E- ISSN 2489-009X

P-ISSN 2695-1908, Vol. 11 No. 2 2025 www.iiardjournals.org Online Version

 IIARD – International Institute of Academic Research and Development

Page 13

𝑦′ = 𝑓(𝑥, 𝑦), 𝑥 ∈ (𝑎, 𝑏), 𝑦(𝑥0) = 𝑦0 (1)

The Euler’s method computes the subsequent value 𝑦𝑛+1 as follows:

 𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓(𝑥𝑛, 𝑦𝑛) (2)

where ℎ is the selected step size (Kumar, 2023).

2.1.1 Euler’s Method Algorithm

1. Start

2. Define the differential equation 𝑓(𝑥, 𝑦)

3. Set the step size h, the interval of computation [𝑥0, 𝑥𝑛], and the initial condition 𝑦(𝑥0) =
𝑦0

4. Compute the number of steps 𝑁 =
𝑥𝑛−𝑥0

ℎ

5. Initialize arrays 𝑥 and 𝑦:

𝑥: Create equally spaced points from 𝑥0 to 𝑥𝑛 with step size ℎ.

 𝑦: Initialize all values to zero and set 𝑦(0) = 𝑦0

6. Iterate for 𝑖 = 0 to 𝑁 − 1:

Calculate the next value of y using Euler’s formula:

𝑦(𝑖 + 1) = 𝑦(𝑖) + ℎ. 𝑓(𝑥(𝑖), 𝑦(𝑖))

7. Compute the exact solution 𝑦𝑒𝑥𝑎𝑐𝑡(𝑥) and calculate the error at each step:

𝑒𝑟𝑟𝑜𝑟(𝑖) = |𝑦𝑒𝑥𝑎𝑐𝑡(𝑖) − y(i)|

8. Display the results in a tabular form

9. Stop

2.2 Runge-Kutta Methods

The Runge-Kutta family of methods is a set of iterative techniques used solving ODEs with higher

accuracy than Euler’s method. The most popular of them is the fourth-order Runge-Kutta method

(RK4). It computes the solution by evaluating the derivative at four distinct points within each step

and combines them to estimate the subsequent value. The RK4 method is widely known for its

optimal balance between computational effort and accuracy. Given that it provides fourth-order

accuracy and is particularly resilient when handling a broad variety of ODEs, it is well-suited for

problems with variable stiffness and non-linearity (Otto & Denier, 2005).

For a given IVP, the RK4 method advances one step from (𝑥𝑛, 𝑦𝑛) to (𝑥𝑛+1, 𝑦𝑛+1) using the

formula:

about:blank

International Journal of Applied Science and Mathematical Theory E- ISSN 2489-009X

P-ISSN 2695-1908, Vol. 11 No. 2 2025 www.iiardjournals.org Online Version

 IIARD – International Institute of Academic Research and Development

Page 14

𝑦𝑛+1 = 𝑦𝑛 +
ℎ

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) (3)

where the terms 𝑘1, 𝑘2, 𝑘3 and 𝑘4 are intermediate slope estimates calculated as follows:

𝑘1 = ℎ𝑓(𝑥𝑛, 𝑦𝑛), 𝑘2 = ℎ𝑓 (𝑥𝑛 +
ℎ

2
, 𝑦𝑛 +

ℎ

2
𝑘1), 𝑘3 = ℎ𝑓 (𝑥𝑛 +

ℎ

2
, 𝑦𝑛 +

ℎ

2
𝑘2), 𝑘4 = ℎ𝑓(𝑥𝑛 +

ℎ, 𝑦𝑛 + ℎ𝑘3)

2.2.1 Runge-Kutta Fourth-Order Method Algorithm

1. Start

2. Define the differential equation 𝑓(𝑥, 𝑦)

3. Set the step size h, the interval of computation [𝑥0, 𝑥𝑛], and the initial condition 𝑦(𝑥0) =
𝑦0

4. Compute the number of steps 𝑁 =
𝑥𝑛−𝑥0

ℎ

5. Initialize arrays 𝑥 and 𝑦:

𝑥: Create equally spaced points from 𝑥0 to 𝑥𝑛 with step size ℎ.

 𝑦: Initialize all values to zero and set 𝑦(0) = 𝑦0

6. Iterate for 𝑖 = 0 to 𝑁 − 1:

 For each 𝑥(𝑖), perform the following steps:

a. Compute 𝑘1using the differential equation 𝑘1 = ℎ . 𝑓(𝑥(𝑖), 𝑦(𝑖)) = ℎ (𝑥(𝑖) + 𝑦(𝑖))

b. Compute 𝑘2 using the midpoint approximation:

 𝑘2 = ℎ . 𝑓 (𝑥(𝑖) +
ℎ

2
, 𝑦(𝑖) +

𝑘1

2
) = ℎ (𝑥(𝑖) +

ℎ

2
+ 𝑦(𝑖) +

𝑘1

2
)

c. Compute 𝑘3 similarly to 𝑘2, but using the updated values.

 𝑘3 = ℎ . 𝑓 (𝑥(𝑖) +
ℎ

2
, 𝑦(𝑖) +

𝑘2

2
) = ℎ (𝑥(𝑖) +

ℎ

2
+ 𝑦(𝑖) +

𝑘2

2
)

d. Compute 𝑘4 using the final point 𝑥(𝑖) + ℎ

𝑘4 = ℎ . 𝑓(𝑥(𝑖) + ℎ, 𝑦(𝑖) + 𝑘3) = ℎ (𝑥(𝑖) + ℎ + 𝑦(𝑖) + 𝑘3)

e. Update 𝑦(𝑖 + 1) using the weighted sum of 𝑘1, 𝑘2, 𝑘3, 𝑘4

𝑦(𝑖 + 1) = 𝑦(𝑖) +
𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4

6

7. Compute the exact solution 𝑦𝑒𝑥𝑎𝑐𝑡(𝑥) and calculate the error at each step:

𝑒𝑟𝑟𝑜𝑟 = |𝑦𝑒𝑥𝑎𝑐𝑡 − y|

8. Display the results in a tabular form

9. Stop

2.3 Heun’s Method

about:blank

International Journal of Applied Science and Mathematical Theory E- ISSN 2489-009X

P-ISSN 2695-1908, Vol. 11 No. 2 2025 www.iiardjournals.org Online Version

 IIARD – International Institute of Academic Research and Development

Page 15

Heun’s method, also known as the improved Euler’s method, is a second-order numerical method

that improves upon the accuracy of Euler’s method. By averaging the slopes at the beginning and

end of the interval, Heun’s method corrects the initial prediction that was calculated using Euler's

approach. This correction step yields a more accurate approximation of the solution compared to

Euler's method. Heun’s method strikes a good balance between simplicity and accuracy, thus

making it a popular choice when moderate accuracy is required without the computational cost of

higher-order methods (Gupta et al, 2022).

Heun’s Method is computed using the following steps:

i. The Predictor Step: This gives an initial estimate of the solution at the next point.

 𝑦𝑛+1
(𝑝)

= 𝑦𝑛 + ℎ𝑓(𝑥𝑛, 𝑦𝑛) (4a)

ii. The Corrector Step: This averages the slopes within the interval to improve the prediction.

Because Heun's method requires averaging the slopes, it is often referred to as a modified Euler

method and falls under the predictor-corrector category.

 𝑦𝑛+1 = 𝑦𝑛 +
ℎ

2
[𝑓(𝑥𝑛, 𝑦𝑛) + 𝑓(𝑥𝑛+1, 𝑦𝑛+1

(𝑝)
)] (4b)

2.3.1 Heun’s Method Algorithm

1. Start

2. Define the differential equation 𝑓(𝑥, 𝑦)

3. Set the step size h, the interval of computation [𝑥0, 𝑥𝑛], and the initial condition 𝑦(𝑥0) =
𝑦0

4. Compute the number of steps 𝑁 =
𝑥𝑛−𝑥0

ℎ

5. Initialize arrays 𝑥 and 𝑦:

𝑥: Create equally spaced points from 𝑥0 to 𝑥𝑛 with step size ℎ.

 𝑦: Initialize all values to zero and set 𝑦(0) = 𝑦0

6. For each 𝑥(𝑖), perform the following steps:

 a. Predictor Step: Use Euler’s method to predict 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡 at the next step:

 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡= 𝑦(𝑖) + ℎ . 𝑓(𝑥(𝑖), 𝑦(𝑖)) = 𝑦(𝑖) + ℎ (𝑥(𝑖) + 𝑦(𝑖))

 b. Corrector Step: Use the predicted value to update with Heun’s method.

 𝑦(𝑖 + 1) = 𝑦(𝑖) +
ℎ

2
 [𝑓(𝑥(𝑖), 𝑦(𝑖)) + 𝑓(𝑥(𝑖 + 1), 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡)]

7. Compute the exact solution 𝑦𝑒𝑥𝑎𝑐𝑡(𝑥) and calculate the error at each step:

𝑒𝑟𝑟𝑜𝑟 = |𝑦𝑒𝑥𝑎𝑐𝑡 − y|

about:blank

International Journal of Applied Science and Mathematical Theory E- ISSN 2489-009X

P-ISSN 2695-1908, Vol. 11 No. 2 2025 www.iiardjournals.org Online Version

 IIARD – International Institute of Academic Research and Development

Page 16

8. Display the results in a tabular form

9. Stop

2.4 Milne’s Predictor-Corrector Method

Milne’s method is a higher-order predictor-corrector technique for solving ODEs. It is based on

using previously computed values of the solution to predict future values. The predictor step uses

an explicit formula to estimate the solution at the next time step, while the corrector step improves

this estimate by taking into account data from previous steps. Milne’s method is a third-order

method, which requires fewer function evaluations than Runge-Kutta and offers higher accuracy

than Euler and Heun. According to Sharma & Patel, (2023), this method is particularly useful for

solving stiff equations and is widely used in computational science and engineering for modeling

complex systems where higher precision is essential.

Given the values of 𝑦 at previous points𝑥𝑛−3, 𝑥𝑛−2, 𝑥𝑛−1, 𝑥𝑛, the solution at the next point 𝑦𝑛+1 is

predicted using the following formula:

𝑦𝑛+1
(𝑝)

= 𝑦𝑛−3 +
4ℎ

3
(2𝑓𝑛−2 − 𝑓𝑛−1 + 2𝑓𝑛) (5)

where 𝑓𝑖 = 𝑓(𝑥, 𝑦) represents the derivative (slope) at point 𝑥𝑖. After obtaining the predicted value

𝑦𝑛+1
(𝑝)

, Milne’s method applies a corrector to improve the accuracy of the prediction. The corrector

uses the trapezoidal rule and the known values of the function to adjust the predicted value:

𝑦𝑛+1 = 𝑦𝑛−1 +
ℎ

3
(𝑓𝑛−1 + 𝑓𝑛−1

(𝑝)
) (6)

This step refines the predicted value by averaging the slopes at points 𝑥𝑛−1 and 𝑥𝑛+1
(𝑝)

2.4.1 Milne’s Predictor-Corrector Method Algorithm

1. Start

2. Define the differential equation 𝑓(𝑥, 𝑦)

3. Set the step size h, the interval of computation [𝑥0, 𝑥𝑛], and the initial condition 𝑦(𝑥0) =
𝑦0

4. Compute the number of steps 𝑁 =
𝑥𝑛−𝑥0

ℎ

5. Initialize arrays 𝑥 and 𝑦:

𝑥: Create equally spaced points from 𝑥0 to 𝑥𝑛 with step size ℎ.

 𝑦: Initialize all values to zero and set 𝑦(0) = 𝑦0

6. Generate the initial values using RK4 method to compute the first three values of y.

For each i from 1 to 3:

a. Compute 𝑘1, 𝑘2, 𝑘3, 𝑘4 using the differential equation.

about:blank

International Journal of Applied Science and Mathematical Theory E- ISSN 2489-009X

P-ISSN 2695-1908, Vol. 11 No. 2 2025 www.iiardjournals.org Online Version

 IIARD – International Institute of Academic Research and Development

Page 17

b. Update 𝑦(𝑖 + 1) using the weighted average of the coefficients:

𝑦(𝑖 + 1) = 𝑦(𝑖) +
ℎ

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)

7. Apply Milne’s Predictor-Corrector method: for each i from 4 to the last point:

a. Predictor Step: Use Milne’s formula to predict the value of 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟.

 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 = 𝑦(𝑖 − 3) +
4ℎ

3
[2𝑓(𝑥(𝑖 − 2), 𝑦(𝑖 − 2)) − 𝑓(𝑥(𝑖 − 1), 𝑦(𝑖 − 1)) +

2𝑓(𝑥(𝑖), 𝑦(𝑖))]

b. Corrector Step: Use Milne’s formula to correct the predicted value and update

𝑦(𝑖 + 1):

𝑦(𝑖 + 1) = 𝑦(𝑖 − 1)

+
ℎ

3
[𝑓(𝑥(𝑖 − 1), 𝑦(𝑖 − 1)) + 4𝑓(𝑥(𝑖), 𝑦(𝑖1)) + 𝑓(𝑥(𝑖 + 1), 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟)]

8. Error Calculation:

a. Calculate the exact solution at each point 𝑥𝑛 using the exact solution function 𝑦(𝑥) =
−𝑥 − 1 + 2𝑥.

b. Compute the absolute error at each point as the difference between the exact and

approximated value:

𝑒𝑟𝑟𝑜𝑟 = |𝑦𝑒𝑥𝑎𝑐𝑡 − y𝑀𝑖𝑙𝑛𝑒|
9. Display Results: Output the values of 𝑥, y𝑀𝑖𝑙𝑛𝑒 , 𝑦𝑒𝑥𝑎𝑐𝑡, 𝑎𝑛𝑑 𝑒𝑟𝑟𝑜𝑟 for each step using

fprintf.

Applying each of these algorithms in writing the matlab programming codes for the different

methods for solving the problem: 𝑦′ = 𝑥 + 𝑦, 𝑦(0) = 1, 0 ≤ 𝑥 ≤ 1, ℎ = 0.1 gives the results as

presented in Figures 3.1 to 3.8.

about:blank

International Journal of Applied Science and Mathematical Theory E- ISSN 2489-009X

P-ISSN 2695-1908, Vol. 11 No. 2 2025 www.iiardjournals.org Online Version

 IIARD – International Institute of Academic Research and Development

Page 18

3. RESULTS

Fig.3.1 MATLAB Code for Euler’s method

Fig. 3.2 Result using Euler’s Method MATLAB Code

about:blank

International Journal of Applied Science and Mathematical Theory E- ISSN 2489-009X

P-ISSN 2695-1908, Vol. 11 No. 2 2025 www.iiardjournals.org Online Version

 IIARD – International Institute of Academic Research and Development

Page 19

Fig.3.3 MATLAB Code for RK4 method

about:blank

International Journal of Applied Science and Mathematical Theory E- ISSN 2489-009X

P-ISSN 2695-1908, Vol. 11 No. 2 2025 www.iiardjournals.org Online Version

 IIARD – International Institute of Academic Research and Development

Page 20

Fig. 3.4 Result using RK4 Method MATLAB Code

Fig.3.5 MATLAB Code for Heun’s method

about:blank

International Journal of Applied Science and Mathematical Theory E- ISSN 2489-009X

P-ISSN 2695-1908, Vol. 11 No. 2 2025 www.iiardjournals.org Online Version

 IIARD – International Institute of Academic Research and Development

Page 21

Fig. 3.6 Result using Heun’s Method MATLAB Code

about:blank

International Journal of Applied Science and Mathematical Theory E- ISSN 2489-009X

P-ISSN 2695-1908, Vol. 11 No. 2 2025 www.iiardjournals.org Online Version

 IIARD – International Institute of Academic Research and Development

Page 22

Fig.3.7 MATLAB Code for Milne’s Predictor-Corrector Method

about:blank

International Journal of Applied Science and Mathematical Theory E- ISSN 2489-009X

P-ISSN 2695-1908, Vol. 11 No. 2 2025 www.iiardjournals.org Online Version

 IIARD – International Institute of Academic Research and Development

Page 23

Fig. 3.8 Result using Milne’s Predictor-Corrector Method MATLAB Code

4. CONCLUSION

This research work was aimed at providing algorithms and MATLAB codes for four numerical

methods for solving initial value problems (IVPs) in ordinary differential equations (ODEs). We

focused on Euler’s Method, Runge-Kutta 4th Order (RK4), Heun’s Method, and Milne’s Predictor-

Corrector Method, and provided a step-by-step implementation of these algorithms using

MATLAB. The results confirmed the significance of these numerical methods in obtaining

approximate solutions when analytical solutions are not feasible. The work demonstrates

MATLAB's potential as a versatile tool for implementing numerical methods, making it accessible

to students and researchers seeking practical solutions in computational mathematics.

5. RECOMMENDATION

1. Compare MATLAB implementations with built-in MATLAB solvers (e.g., ode45, ode23) or

solvers in other programming languages like Python or R.

2. This work can be extended for other numerical methods.

3. Future studies could consider error estimation and convergence behavior of these numerical

methods to provide a more comprehensive understanding of their accuracy.

about:blank

International Journal of Applied Science and Mathematical Theory E- ISSN 2489-009X

P-ISSN 2695-1908, Vol. 11 No. 2 2025 www.iiardjournals.org Online Version

 IIARD – International Institute of Academic Research and Development

Page 24

REFERENCES

[1]. MathWorks, (2024). MATLAB and Simulink Documentation. Retrieved from

(https://www.mathworks.com/help/).

[2]. Moler, C. (2020). Numerical Computing with MATLAB. SIAM.

[3] Bouchaib Radi & Abdelkhalak El Hami (2018) Advanced Numerical Methods with Matlab 2.

ISBN 978-1-78630-293-9. John Willey & Sons, Inc.

[4]. Gander, W., & Hřebíček, J. (2018). Solving Problems in Scientific Computing Using

MATLAB and Octave. Springer.

[5]. Higham, D. J., & Higham, N. J. (2017). MATLAB Guide. SIAM.

[6]. Gupta, V., & Rana, S. (2023). MATLAB for Modeling and Simulation of Complex Systems.

Journal of Computational Science, 48, 102548.

[7]. Chen, Y., & Wang, H. (2022). Hybrid Numerical Methods Implemented in MATLAB for

Large-Scale Systems. Applied Numerical Mathematics, 174, 106010.

[8]. Ali, S., & Khan, M. (2021). Integrating MATLAB in Teaching Numerical Methods: A

Comparative Study. International Journal of Education Technology in Higher Education, 18(1),

28.

[9]. Abbas, S. M., & Zhang, R. (2023). Numerical Solutions to Differential Equations Using

MATLAB Toolboxes. Mathematics and Computers in Simulation, 212, 181–197.

[10]. Lin, T., & Chou, P. (2023). Advancing Computational Performance through MATLAB:

Applications in Scientific Computing. Journal of Computational Methods in Science and

Engineering, 23(2), 423-437.

[11] Smith, R., & Brown, A. (2021). Numerical Solutions for Ordinary Differential Equations: A

Review of Euler’s Method. Journal of Computational Mathematics, 46(2), 159–172.

[12] Chapra, S. C. & Canale, R. P. (2010). Numerical Methods for Engineers (6th edition).

McGraw-Hill Education.

[13] Jones, M., Miller, D., & Walker, H. (2022). Runge-Kutta Methods for Solving ODEs: Theory

and Practice. Applied Numerical Analysis, 58(4), 378–393.

[14] Williams, L., & Zhang, X. (2023). A Comprehensive Overview of Heun’s Method for

Numerical Integration of ODEs. International Journal of Numerical Methods, 60(3), 229–242.

[15] Kumar, S., Gupta, P., & Rao, M. (2023). Milne’s Predictor-Corrector Method for Solving

Stiff Differential Equations: A Comparative Analysis. Journal of Computational and Applied

Mathematics, 78(5), 210–222.

about:blank

International Journal of Applied Science and Mathematical Theory E- ISSN 2489-009X

P-ISSN 2695-1908, Vol. 11 No. 2 2025 www.iiardjournals.org Online Version

 IIARD – International Institute of Academic Research and Development

Page 25

[16] Otto, S. R. & Denier, J. P. (2005). An Introduction to Programming and Numerical Methods

in MATLAB. Springer-Verlag London Limited. ISBN-10: 1-85233-919-5

[17] Gupta, R., Kumar, S., & Singh, P. (2022). Numerical solutions of differential equations using

MATLAB: A practical approach. Journal of Computational Mathematics, 45(3), 210–225.

[18] Sharma, V., & Patel, A. (2023). Advances in numerical analysis: Implementing ODE solvers

with MATLAB. International Journal of Applied Mathematics and Computation, 59(2), 101–118.

about:blank

